1627. Graph Connectivity With Threshold
Description




Solution
Obviously we need to use UF set.
The problem here is how to enumerate the gcd of two number. I firstly just iterate n^2 numbers pairs and try to find their common factors and got TLE.
–> We could start from the factor and to enumerate its multiples. 
Code
| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 
 | class UF{public:
 vector<int> uf, size;
 UF(int n):uf(n), size(n){
 for(int i = 0; i < n; i++){
 uf[i] = i;
 size[i] = 1;
 }
 }
 
 void Union(int x, int y){
 int fx = find(x), fy = find(y);
 if(fx == fy) return;
 uf[fx] = fy;
 size[fy] += size[fx];
 }
 
 int find(int x){
 if(uf[x] != x){
 uf[x] = find(uf[x]);
 }
 return uf[x];
 }
 
 int get_size(int x){
 int fx = find(x);
 return size[fx];
 }
 
 };
 class Solution {
 public:
 vector<bool> areConnected(int n, int threshold, vector<vector<int>>& queries) {
 
 vector<bool> res(queries.size(), true);
 if(threshold == 0){
 return res;
 }
 UF uf(n+1);
 for(int i = threshold + 1; i < n; i++){
 for(int p = i, q = 2 * i; q <= n; p += i, q += i){
 uf.Union(p,q);
 }
 }
 for(int i =0 ; i < queries.size(); i++){
 res[i] = uf.find(queries[i][0]) == uf.find(queries[i][1]);
 }
 return res;
 }
 };
 
 | 
